
STUDYING DIFFERENT TECHNIQUES FOR REDUCING
INTERFERENCE IN MIXED-CRITICALITY SYSTEMS FOR
MULTICORE PLATFORMS
JAVIER FERNANDEZ, TAMARA LUGO, JESUS CARRETERO

1

INDEX

¡ Context and motivation.

¡ Sources of interferences in multicore platforms.

¡ Techniques to reduce cache interferences.

¡ Framework for reducing interferences in mixed-criticality workload.

¡ Design of a simulation framework.

¡ Conclusions.

2

CONTEXT

¡ Real-time applications have a huge impact in several fields.

¡ i.e., Multimedia streaming applications, embedded applications for monitoring and controlling, etc.

¡ Real-Time requirements can be hard (no deadline missed) or soft (some deadline can be missed).

¡ Different levels of criticality for different applications.

¡ Performance in Real-Time applications is secondary to fulfill the Real-Time requirements.

¡ Some environments requires the execution of mixed-criticality applications.

¡ Including hard Real-Time applications, soft Real-Time applications and normal (best-effort) applications.

¡ Nowadays the execution of mixed-criticality workloads on multicore systems present some problems.
¡ The amount of shared hardware between cores / applications creates interferences.

¡ These interferences makes very difficult to ensure the fulfillment of the deadlines.

3

MOTIVATION

¡ The execution of mixed-criticality workloads on multicore nodes requires to reduce these interferences.

¡ This is needed to ensure the deadlines while losing the least amount of performance possible.

¡ Real-Time applications are very dependent on the Worst-Case Execution Time (WCET).

¡ The time that takes to execute when every resource behaves the worst (that includes interferences).

¡ Real-Time applications can not be expected to run faster than this even though they could.

¡ Reducing interferences allows to obtain a better WCET.

¡ However, it can reduce the performance of other applications and the overall systems.

¡ The goal is to select the correct techniques to reduce the interferences when executing a mixed-criticality
workload in order to enhance the WCET the most without reducing the overall performance.

4

SOURCES OF INTERFERENCES IN MULTICORE PLATFORMS

¡ Memory interferences.

¡ Exclusive access to each Memory Bank

¡ Each Memory Bank is accessed through a row buffer.

¡ DRAM Access controller schedules the access to each bank.

¡ Memory bus interferences.

¡ A scheduling mechanism is needed to share it.

¡ Cache interferences.
¡ Normally implemented as set associative caches with several ways.

¡ Several levels of cache.

¡ Core-exclusive caches vs. shared caches.

5

EXAMPLE: SET ASSOCIATIVE CACHE WITH 16 WAYS

6

TECHNIQUES TO REDUCE CACHE INTERFERENCES

¡ Cache-locking.

¡ Prevent specific cache lines from being removed.

¡ Allow a better computation of the WCET.

¡ Only a few CPUS implement it (i.e., LEON4).

¡ Cache partitioning.

¡ Split the cache for exclusive use of each core/process.

¡ Two main techniques:

¡ Hardware cache partitioning.

¡ Cache coloring (software technique).

7

CACHE-LOCKING

¡ Cache-locking is a hardware feature in some CPU architectures (i.e., LEON4).

¡ Allows to tag certain cache lines as non-removable.

¡ This tags can be modified during the program execution.

¡ Cache locking is mostly used to improve the WCET for Hard Real-Time applications.

¡ Content locked in cache can be accessed fast with total certainty.

¡ However locked content reduce the cache effectiveness.

¡ A balance of locked/free content is needed per application.

8

HARDWARE CACHE PARTITIONING

¡ Cache partitioning is the segmentation of the cache space.

¡ Each partition is allocated for a certain task/core.

¡ Partitions can be statically settled at the beginning or dynamically modified.

¡ Hardware cache partitioning is a feature on many recent CPUS (last 5 years).

¡ Allows to partition shared caches, normally the last level cache (LLC).

¡ Cache ways can be split in several groups each one with an ID.

¡ Cache partitions can be allocated per core.

¡ Each core can be assigned with one or several ID groups.

¡ Examples of Hardware cache partitioning architectures.

¡ Intel: Cache Allocation Technology (CAT). Present in modern Xeon and Atom processors.

¡ Arm: Memory System Resource Partitioning and Monitoring (MPAM). Present since Armv8.4-A architecture.

9

CACHE COLORING

¡ Cache-coloring is a software-only approach to cache partitioning.

¡ Based on a side-effect of set associative caches
¡ Only a small number of cache lines can co-exist in the cache.

¡ This co-exit lines always reside a multiple of the set size apart.

¡ The maximum number of co-existing lines is equal to the number of ways in the cache.

¡ The technique divides memory into sections that can co-exist in cache.
¡ Each memory section is given a color.

¡ Each color is given to a unique task.

¡ The color assignation is done using virtual memory.
¡ Cache lines on the same page always have the same color.

¡ Each task is only assigned pages of the same set of colors.

10

CACHE COLORING

11

FRAMEWORK FOR REDUCING INTERFERENCES IN MIXED-
CRITICALITY WORKLOAD

¡ Integrated Management for different processes categories.

¡ Different execution schemas for each category.

¡ Compute the expected performance for the size of each cache partition.

¡ Calculate the WCTE for Hard RT applications.

¡ Calculate a statistical performance for soft RT and best-effort applications.

¡ Propose a cache partition schema thar covers all levels of cache.

¡ Each level can use different cache partition techniques.

¡ Improve the WCET by blocking cache data.

¡ Using hardware cache-locking.

¡ Propose a technique to block data on cache using cache coloring.

12

INTEGRATED MANAGEMENT FOR MIXED-CRITICALITY
WORKLOADS

¡ The goal is to reduce interferences among applications of different criticality.

¡ Basic kinds of criticality.

¡ Hard Real-Time applications: Missing one deadline is total failure.

¡ Soft Real-time applications: Missing less deadlines than a certain value is acceptable.

¡ Best-effort applications: No deadlines or real-time requirements needed.

¡ Applications can be executed on the cores as following:

¡ One application execute exclusively on a single core.

¡ Best option for Hard RT apps and best-effort applications that need performance.

¡ Several applications can execute on a single core.

¡ Using Real-Time scheduling algorithms (Hard and soft RT apps.).

¡ Using normal scheduling algorithms (best effort apps.)

13

INTEGRATED CACHE PARTITIONING

¡ Cache partitioning is different depending on the level of cache.

¡ Shared cache: Two different options:

¡ Hardware cache partitioning: Easy to implement, but only work on some (modern) CPUs.

¡ Cache coloring: Works on any set associative cache but reduces the hit ratio from plain partitioning.

¡ Exclusive cache: No hardware support..

¡ Cache coloring Is the last option. Only needed if:

¡ More than one application per core.

¡ Using cache coloring for other purposes (blocking cache data).

14

IMPROVE THE WCET BY BLOCKING CACHE DATA

¡ Hard Real-Time applications are limited by the Worst-Case Execution Time (WCET).

¡ No matter if the data is in cache If there is a chance it could have been only in memory.

¡ There are some techniques to statically analyze the code and ensure sometimes that certain data is in cache.

¡ One way to improve WCTE is to block in cache data that is more frequently used.

¡ However, it reduces the probability of the rest of data to be on cache.

¡ Data can by block in cache using hardware features on certain CPUs.

¡ Alternative proposed: Using cache coloring:

¡ Using more than one color per application and use one color only for blocking data on cache.

15

EVALUATION INFRASTRUCTURE

¡ Design of a simulation framework.

¡ Simulation of a multilevel set associative cache.

¡ Design a mixed-criticality workload.

¡ Schema to obtain execution logs with memory operation and addresses.

¡ Compare several management techniques to avoid interferences.

¡ Implement the integrated management for mixed-criticality workloads.

¡ Compare different implementations using different techniques (cache-coloring, hardware partitioning, cache-locking).

16

DESIGN OF A SIMULATION FRAMEWORK

¡ A simulation framework is developed for:

¡ Simulate execution of computing traces generated from real executions.

¡ Simulate the virtual memory mapping for implementing cache coloring.

¡ Simulating several levels of cache (set associative caches with several ways) that featured.

¡ Hardware cache partitioning.

¡ Hardware cache-locking.

¡ The simulation Framework is implemented using MATLB/SIMULINK.

¡ Traces are obtained from real execution onto ARM CPUs.

17

DESIGN A MIXED-CRITICALLITY WORKLOAD

¡ Designing a number of workloads including several application traces with different criticality.

¡ Changing criticality levels, deadlines margin, computation/memory intensity, etc.

¡ Traces are generated from real execution logs.

¡ Using GDB to obtain an execution log that includes:

¡ Memory address of the instruction.

¡ Assemble code from the instruction (including operands).

¡ GDB also allows to obtain memory addresses for data operands.

18

COMPARE SEVERAL MANAGEMENT TECHNIQUES TO AVOID
INTERFERENCES

¡ Different experiments are designed to test different configurations:

¡ Workloads including different applications with different levels of criticality.

¡ Different cores assignation to single/multiple applications.

¡ Different cache partitioning techniques on each cache levels.

¡ Using cache-locking techniques for improving WCET.

¡ The goal is to obtain a general strategy that:

¡ Improve general performance.

¡ Improve WCET for Hard Real-Time applications.

19

STATE OF THE WORK

¡ Complete / almost complete.

¡ The simulation framework presented is in the final states of completion.

¡ A tool to automatically generated execution traces is already developed.

¡ Several workloads of application traces are already generated.

¡ To be done.

¡ Implement and execute several mixed-criticality configurations using the finished simulation framework.

¡ Compare the results using each combination of techniques for each workload.

¡ Develop a general strategy to improve performance based on the obtained results.

20

CONCLUSIONS

¡ We have studied several techniques to reduce interferences on mixed-criticality workloads.

¡ Mainly based on cache partitioning and cache-locking.

¡ An integrated approach is proposed to cover:

¡ All the different levels of cache.

¡ Workloads including applications with different levels of criticality.

¡ A simulation framework is developed to test all the proposed configurations.

¡ Using traces generated from actual executions of the applications.

¡ Once the results are obtained a general strategy to improve performance will be derived from them.

21

PUBLICATIONS

¡ T. Lugo, S. Lozano, J. Fernández and J. Carretero.
A Survey of Techniques for Reducing Interference in Real-Time Applications on Multicore Platform
in IEEE Access, vol. 10, pp. 21853-21882, 2022, doi: 10.1109/ACCESS.2022.3151891.

22

STUDYING DIFFERENT TECHNIQUES FOR REDUCING
INTERFERENCE IN MIXED-CRITICALITY SYSTEMS FOR
MULTICORE PLATFORMS
JAVIER FERNANDEZ, TAMARA LUGO, JESUS CARRETERO

23

