

Adaptive multi-tier intelligent data manager for Exascale

admire-eurohpc.eu

Energy-aware malleable scheduling techniques

Alberto Cascajo, David E. Singh, Alvaro Arbe Milara, and Jesus Carretero **PDP2023**

Grant Agreement number: 956748 — ADMIRE — H2020-JTI-EuroHPC-2019-1

CABAHLA-CM: convergencia big data-HPC de los sensores a las

aplicaciones (p2018/tcs4423)

El Fondo Social Europeo invierte en tu futuro

Motivation

- □ Application energy profile
- □ Energy-aware malleable scheduler

Results

Conclusions

Introduction: contributions

□ Work contributions:

>Integration of the application use case with FlexMPI and an energy monitor

Energy profile modeler

Energy-aware malleable scheduler

➢ Practical evaluation on a real platform

Motivation

□ Application energy profile

Energy-aware malleable scheduler

Motivation

Current schedulers lack of malleability support

Energy-aware malleable techniques are an open research area

Application monitoring combined with run-time algorithms can provide adaptability to application changing conditions

Motivation

□ Application energy profile

D Energy-aware malleable scheduler

Introduction: application energy profile

Application energy profile is **application energy** for a certain:

- 1. DVFS value, compute-node dependent, RAPL interface.
- 2. Number of processes, application dependent, FlexMPI support.

Introduction: application energy profile

Application energy profile: energy values for the range of two different parameters
 Compute node DVFS value

- Application number of processes
- Energy profile is different for each application
- Computing the application energy profile requires many evaluations
- Challenge: obtain the application energy profile in run-time with a reduced number of evaluation.

- Calculates the application energy profile in run-time combining:
 Application energy monitoring
 DVFS level
 Application's number of processes
 Interpolation algorithm
- ↓ Iterative algorithm▶ Based on interpolation

```
for i=1,2
    (vf<sub>i</sub>, np<sub>i</sub>) = SetSample(i)
     E_i \leftarrow TakeSample(vf_i, p_i)
end
AP = EProf(E_{i=1}, vf_{i=1}, p_{i=1})
err = ComputeError(AP)
while(error > threshold)
    i++
    (vf_i, np_i) = SetSample(i)
    E_i \leftarrow TakeSample(vf_i, p_i)
    AP = EProf(E_{i=1..N}, vf_{i=1..N}, p_{i=1..N})
    err = ComputeError(AP)
end
```


leable data solutions for H

Energy profile modeler

malleable data solutions for HPC

Energy profile modeler

malleable data solutions for HPC

Motivation

□ Application energy profile

□ Energy-aware malleable scheduler

Results

Conclusions

Considers both the application energy profile (*E*) and execution time (T)

- \Box E_{max}, T_{max} are the application maximum values
- \Box W₁ and W₂ are weights
- Optimization algorithm searches the minimum F value
- Balances two goals: energy and execution time minimization

$$F(NP, freq) = W_1 \frac{E(NP, freq)}{E_{\max}} + W_2 \frac{T(NP, freq)}{T_{\max}}$$

Motivation

Application energy profile

D Energy-aware malleable scheduler

Conclusions

Intel Xeon Gold 6212U, 24 cores, 314 GB RAM.

Use cases:

➢Use case A: CPU-intensive with high locality data accesses

➢Use case B: CPU-intensive with low locality data accesses

➢Use case C: communication-intensive with low locality data accesses

➤Use case D: I/O-intensive with low locality data accesses

Use case E: mixed CPU, communication and I/O phases with low locality data accesses

Evaluation: energy profile

malleable data solutions for HPC

Optimization *F* function for use case E
Only energy optimization $W_1 = 1, W_2 = 0$ Only execution time optimization $W_1 = 0, W_2 = 1$

■0-0,2 ■0,2-0,4 ■0,4-0,6 ■0,6-0,8 ■0,8-1

- □ Scheduler solutions for the energy minimization (W_1 =1, W_2 =0)
- Full search vs interpolation with 5 values.

Use case	Configuration (full detail)	Saving (full detail)	Configuration (interpolation)	Saving (interpolation)
Α	24 procs, 2.2 GHz	93%	24 procs, 2.0 GHz	92%
В	24 procs, 2.2 GHz	92%	10 procs, 2.4 GHz	85%
С	3 procs, 2.2 GHz	59%	5 procs, 2.2 GHz	54%
D	8 procs, 2.0 GHz	81%	7 procs, 2.2 GHz	81%
E	3 procs, 2.0 GHz	77%	1 proc, 2.,2 GHz	75%

Motivation

Application energy profile

D Energy-aware malleable scheduler

Results

We have developed a dynamic energy-profile model

- Accurate for the considered use cases
- >Only a few iterations produce a good model (in terms of detail level)
- We have implemented a malleable scheduler
 That uses the previous model to determine the best application configuration
- We have completed an evaluation on a real platform
 By means of this approach it is possible to minimize either the energy consumption or the execution time.
 - >Intermediate optimization levels that balance both terms are also possible

